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An asymptotic equivalence theorem is proven between the solutions of the 
initial value problem in all space for the Boltzmann and Enskog equations for 
initial data which assure global existence for the solutions to the initial value 
problem for one of the two equations. The proof is given starting from the 
solution of the Boltzmann equation, then the proof line is simply indicated when 
one starts from the Enskog equation. The proof holds for Knudsen numbers of 
the order of unity and equivalence is proven when the scale of the dimensions of 
the gas particles characterizing the Enskog equation tends to zero. 
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1. I N T R O D U C T I O N  

The Boltzmann equation is a mathematical model, in the kinetic theory of 
gases (1~ which describes the time-space evolution of the one-particle 
distribution function of a dilute monatomic gas. The interaction between 
particles is described by suitable pairwise interaction potentials for mass 
point particles. (6'7) 

The Enskog equation (5,13) is a mathematical model for moderately 
dense gases such that each particle is modeled as a sphere with finite 
diameter with interaction between pairs of particles according to a hard- 
sphere potential. In addition, the overall dimensions of the spheres are 
taken into account in estimating the collision frequency. The Enskog 
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equation in its standard form, classified in Ref. 2 by the abbreviation SEE, 
was proposed by Enskog (5) under semiempirical arguments discussed in 
detail in the sixth chapter of Ref. 13. This model is not consistent with 
irreversible thermodynamics. The original model has been modified (1) 
under more detailed derivation rules in order to provide an equation con- 
sistent with irreversible thermodynamics. This new model was classified in 
Ref. 2 with the abbreviation REE (revised Enskog equation). 

This paper deals with the analysis of the asymptotic equivalence (when 
the scale of the dimensions of the gas particles in the Enskog model tends 
to zero) between the Boltzmann and the Enskog equations when the initial 
conditions are such that a global existence theorem holds for the solutions 
to the Cauchy problem for the Boltzmann equation. In particular, the 
analysis will deal with small initial conditions tending to zero at infinity in 
the phase space. 

This analysis can be regarded as an indirect validation of the Enskog 
model and will include, as a particular result, the analysis of global 
existence and uniqueness of the solutions to the Cauchy problem for the 
Enskog equation. The mathematical results proposed in this paper hold for 
the SEE and can generally be extended to the REE. In this case, following 
the terminology proposed in Ref. 2 it will be stated that all results hold for 
the Enskog equation in general, i.e., for the EE. 

The analysis starts from the fact that the initial value problem for the 
Boltzmann equation in all space, as well as for the Enskog equation, (15) has 
a unique global mild solution if the initial datum decays rapidly enough at 
infinity with respect both to space and velocity. This is true even if the total 
mass of the gas is infinite (for sufficiently smooth decay in the physical 
space), provided that the initial datum is small in norm. (3'14) 

Section2 provides a description of the Boltzmann and Enskog 
equations written in a classical dimensionless form. Then a slight 
generalization of the existence theorems given in Refs. 3 and 14 is provided 
in such a fashion that if the initial datum is smooth in space, then a certain 
smoothness characterizes the solution. Given this solution, it is proven in 
the last section that the Enskog equation for the same initial datum also 
has a global solution as long as the particle diameter is small and that this 
solution actually approaches that of the Boltzmann equation when the 
diameter tends to zero. In particular, an evolution equation is derived for 
the difference between the solutions of the same initial value problem for 
the two mathematical models. The main theorem of the paper proves 
global existence and boundness properties of such a remainder. In addition, 
it is proven that the difference tends to zero when the diameter of the 
particles tends to zero. The theorem can also be proven, under some 
technical extensions, starting from the Enskog equation and showing that 
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the solution of the Boltzmann equations for the same initial datum exists 
globally in time and tends to that of the Enskog equation in the same 
asymptotic limit. 

2. THE M A T H E M A T I C A L  M O D E L  

Both the Boltzmann and the Enskog equations describe the time-space 
evolution of the one-particle distribution function 

the moments of which provide the macroscopic hydrodynamic quantities, 
such as the local mass density 

p = p(7, f~) = mn(~, f~) = m fR3 ~(7, f~, ~r) dV 

mass velocity 

U = U(~, i )  = [l/n(7, ~)3 f~3 

and temperature 

(2) 

97(z, ~, re) ,/9 (3) 

T =  T(7, ~ )=  [1/(3k/mn('i, i ) ]  fu3 (~r U)2 f(7' i '  ~') dV (4) 

See the reviews in Refs. 4, 6, and 7 for a detailed analysis of the 
mathematical problems and results related to the Boltzmann equation and 
Ref. 2 for a review of analogous problems related to the Enskog equation, 
either SEE or REE. 

Recall that in the Enskog model pairwise collisions occur between gas 
particles with center in i and velocity ~" with particles with center in 
( i -  ~v) and velocity ~r where v is the unit vector joining the centers of 
two hard spheres with diameter a. The velocities after the collision can be 
classically recovered by the conservation equations of momentum and 
energy and will be indicated by ~r and ~r The collision, in the Boltzmann 
model, occurs in i ,  i.e., a mass-point model is adopted for the gas particles. 
In addition, the collision frequency is increased in the Enskog model by a 
factor Z, which takes into account the overall dimensions of the gas 
particles, whereas this factor is equal to one in the Boltzmann model. 

The initial value problem in all space with initial conditions 
F=97(7= 0, i ,  ~r is considered in this paper for both equations written in 
the dimensionless form suggested in Section 1 1 of Chapter 2 in Ref. 10. 
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Such a dimensionless form is obtained by selecting some reference values 
for the independent variables (7, ~,, V) and for the distribution function jr 
and referring all dimensional quantities to the reference values. The value 
of the distribution function jr(?'= 0, i = 0, V) can be used to recover the 
reference quantities as indicated in Ref. 10, pp. 99-104. In particular, the 
characteristic time tc is the mean collision time, the characteristic velocity 
Vc the mean velocity of the gas particles, the characteristic distribution 
function fc = no~ c3, where n o and Co are, respectively, the number density 
and the thermal velocity in (~=0 ,  7=0),  and finally the characteristic 
length lc can be chosen in order to have the Strouhal number Sh = lc/Vctc 
equal to one. 

Following the line indicated above, the two equations in the new 
dimensionless variables, which will simply be denoted without the tilde, i.e., 
f= f ( t ,  x, V), take the form 

OfB/#t + V" Vf~ = (1/Kn) Jo(fB, fB) (5) 

~?fE/~t + V" VfE = (1/Kn) E , ( (1 /Kn)" fE ; fE ,  fE) (6) 

with initial conditions 

F=fB(t = 0, x, V ) = f E ( t  = 0, x, V) (7) 

In Eqs. (5) and (6), Kn is the Knudsen number defined by the ratio 
between the mean free path and the characteristic length in t = 0 and x = 0. 
The collision operators for a hard-sphere gas with dimensionless diameter 
o have been indicated by Jo and E~. Consider now the following operators: 

J+(f, g)(x, V) = f f ( i  + av, V'l) g(x, V') 
JR 3• S 2 

and 

• ~ ( ( v l  - v ) .  v) dv ~ 

R~(f)(x, V) = fR3• -- av, VI) 

X ( ~ ( ( V  1 - -  V ) "  V) d v  d V  1 

(8) 

(9) 

E+ (f; g' h)(x' V)= f R3• + (f' a) g(x + av' V'l) h(x' V') 

• q~((V~ -- V)-v) dv dV~ (10) 

Eg- (jq g, h)(x, V) = h(x, V) fR3 • 2 x-(f; a) g(x - av, V,) 

• ~b((V, - V)-v) dv dVa (11 ) 
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where 

S 2 = {v e ~3: Ivl = 1 }, y > O: ~ ( y )  = y, y < O: q~(y) = 0 

)~ + is the pair correlation function. 
In addition, the following operators can be further defined as 

j~(f, g) = 1 + ~[Jo (f, g) + J+(g, f )  - fR~(g) - gR~(f)] (12) 

h ~ - l r E  +t~" h)+E+(f',h, - E 2 ( f ; g ,  g)] (13) E.(f;g, , - ~ .  ow,g ,  g) h ) -E~( f ;h ,  

Here J0 is the classical Boltzmann operator for a hard-sphere interaction 
potential, (4"6'7) J~ is the Boltzmann-Enskog operator, and E~ is the Enskog 
operator. (2) Note that Jo is a bilinear symmetric operator acting only upon 
the variable V. Equations (5), (6) have now been fully characterized. 

If one now considers the expansion of the operator J~ in terms of 
powers of a, the various terms of the expansion can be written as 

j(i)(f~ g) "=l-Fl+(i)[f2t-~ w, g)+J+(O(g,f)-fR(~i)(g)-gR~)(f)] (14) 

where 

fm (v V) ' f (x+av,  Vi )g(x ,V ' )O((V~-V) .v)dvdV~ j+ ( i ) ( f ,g )=  3• 2 " 

(15) 

and 

f= (v- v ) i f ( x -  ~v, v , )  ~ ( ( v l  v ) . v )  dv ~ ,  R~O(f) = 3• (16) 

Moreover, the expression for the remainder in the power expansion is 

[ hi ] 
flf)(f, g)=(1/~rk) J~(f, g)-Jo( f ,  g ) -  ~ ~riJ(oi)(f g) 

i = 1  

(17) 

This paper deals with the analysis of the asymptotic equivalence 
between Eqs. (5) and (6) for the solutions of the initial value problem in all 
space with initial conditions (7). This analysis is developed in the next two 
sections. In particular, Section 3 deals with the analysis of the existence 
problem for the solutions to the Cauchy problem for the Boltzmann 
equation (5), whereas the Section4 deals with the analysis of the 
asymptotic equivalence between the solutions of the two equations for 
initial conditions such that global existence is assured for the Boltzmann 
equation. 
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3. GLOBAL EXISTENCE RESULTS FOR THE B O L T Z M A N N  
EQUATION 

Global existence and uniqueness results of the solutions to the Cauchy 
problem for the nonlinear Boltzmann equation in all space have been 
given, for sufficiently small initial data decaying to zero at infinity in the 
phase space, by Illner and Shinbrot, (9), Hamdache, (8) Bellomo and 
Toscani, (3) and Toscani. (14) All the above results have been reviewed and 
discussed in detail in Ref. 4. In particular, Toscani's global existence 
theorem (14) assumes the weakest decay in the phase space and will be the 
starting point of the analysis developed in this section, where a global 
existence theorem is proven in a suitable space of differentiable functions, 
whereas the original result was given simply for continuous and bounded 
functions. This "technical" extension also holds in the case of the global 
existence theorems proposed in Refs. 3, 8, and 9. 

Consider, then, the function f along the free-stream trajectories 

f#(t, x, V ) = f ( t ,  x + Vt, V) (18) 

and problems (5) and (6) in the "mild" form 

f ~ = F+ (1/Kn)(~Jo(fB, fB) ) ~ 

fE ~ = F +  (1/Kn)(q/E~((1/Kn) "fE ; rE, fE)) # 

(19a) 

(19b) 

where the operator ok, is defined by 

~f(t, x, V) = f(s, x - (t - s) V, V) ds (20) 

Now let W~ be a function with values W~(y)= (1 + y2)~/2 and C~(X) the 
space of all real functions continuous and bounded with all their 
derivatives of order l TI ~< n, on the space X. Then the space 

{ /Sin ) ~" = f ~  C~ 3 x ~3): ~_Sxvf(x ' V) Wp(lxl) W~(IVI) 

for each multiindex ? such that [~l ~< n t (21) CO(~ 3 ~3) 
E X 

can be defined and endowed with the norm 

LFGnIYl ] 
I l f l l .  = sup I ~ f ( x ,  v) wp(Ixl) w~(IVl) (22) 

171 ~<n, (x ,V)~  ~ 6 
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In addition, the space 

t f e  C~ x ~3 x ~3): Mn 

"~x~f (t,x, V) Wp(lXl) Wk(lvI)~C~ + ~3• 

for each multiindex 7 such that ]71 ~< n} 

can also be defined with the norm 

(23) 

rllftll~= sup [If#(t)lj~ ~) 

It will be assumed in what follows that p and k are fixed constants and 
p > 1, (k < 3); see Refs. 14 and 4. Toscani's Theorem (14) (see also Ref. 4) can 
be rewritten as follows: 

Theorem 1. Let f, geN~ then the following inequality holds: 

Ill(~#Jo(f, g)# JJ[o ~< c, II/flllo Illglllo (25) 

where ci =-c/Kn and c depends only on the values o fp  and k. In addition, 
there exists a critical value c2= 1/(4Cl) such that if F>~0 and JlFII0<c2, 
then problem (19a) has a unique global nonnegative solution f s  ~ M~ and 

HIfBN[o ~< 2 I[F[Io (26) 

Remark I. Note that inequality (26) implies 

HITsIll o < l/(2cx) (27) 

Remark 2. The proof provided in Ref. 14 as well as in Ref. 4 was 
realized for the operator Jo~; however, the same proof holds for the full 
operator Jo. 

Remark 3. Considering that we deal with Knudsen numbers larger 
than zero, we will put Kn = 1 for simplicity of writing in what follows. 

Consider now the problem with smooth initial data in the function 
space defined in (23); a technical extension of Theorem 1 is the following 

Theorem 2.  Let the initial conditions be such that the smallness 
conditions defined in Theorem 1 are satisfied and in addition F e  ~"; then 
problem (19a) has a unique global solution 0 ~ fB e ~ .  
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ProoL The statement of Theorem 2 is such that the global existence 
conditions required by Theorem 1 are satisfied. Then there exists a unique 
solution fB such that inequality (27) is satisfied. Consider now, for Kn = 1, 
in the terms defined by Remark 3, the evolution equation for g = 8fB/8xi in 
the form 

g# = G + 2(q/J0(/B, g))# (28) 

where G= OF/Oxi. Equation (28), which is linear in g, can be solved by 
application of a fixed-point theorem, taking into account inequalities (25) 
and (27). One obtains 

III glllo ~ HGIIo/(1 - 2Cl IllfBllbo) (29) 

and the statement of Theorem 2 follows by induction. | 

4. GLOBAL EXISTENCE FOR THE ENSKOG E Q U A T I O N  A N D  
A S Y M  PTOTIC E Q U I V A L E N C E  

The problem of the analysis of the global existence of the solutions to 
the Cauchy problem for the Enskog equation and of the asymptotic 
equivalence with the Boltzmann equation is considered here. Before enter- 
ing into details of the analysis of this problem, it is important to define the 
relevant mathematical properties of the term Z, which is a correction term 
of the collision frequency due to the overall dimensions of the gas particles. 
As already pointed out, (2'15) this factor is a monotonically increasing 
functional of the local density and becomes infinite when the local density 
approaches a critical value corresponding to the condensation density. 
Then only moderate densities can be taken into account. The set of these 
functions can be indicated by D~ and can be defined as 

D~ = {f." sup f f(t,x,V) dV<<.K~} (30) 
t,x ~3 

where K~ is a given constant such that a ~ 0 ~ K~ ~ oo. 

Remark 4. The structure of the function space ~"  is such that there 
exists a constant c3(K~) such that the following implication holds: 

Hlflllo ~< c3(K,7) ~ f ~  Do (31) 

Then, independently of a, one can choose a value K* larger than 
1/(2cl) and find a critical value a* of a so that K*~c3(K~.) defines the 
subset 

D*= {f." IIIflllo~<g*} (32) 
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Keeping this in mind and letting 

z + ( f  ", a)= 1 + o z + ( f )  (33) 

we can define the properties of the term Z by the following: 

Hypotheses X: 

(i) Z+(0) =0 .  

(ii) Vfe D*: - 1 ~< ~+ ( f )  ~< Z*, Z* = O(1) for a + 0. 

(iii) Vf, g ~  D*:f~< g ~  -+ - ZD- ( f )  ~< g+(g) �9 
(iv) Yf, g ~ D * :  Iz+(f)-z+(g)l<<.l(~r)l~3 ( f - g ) d V I ,  w h e r e / = O ( 1 )  

for a~0. 

In addition, we define J~ by the relation 

E~(f; g, h)= J,(g, h)+ a.  E~(f; g, h) (34) 

so that problem (19b) can be rewritten in the form 

f ~ = F+ (dllJ~(fE, .rE)) # + a(qzE~(fE ; fE, fE)) # (35) 

An approach similar to that of Ref. 12 can now be applied to derive an 
evolution equation for the difference between the solutions of the two 
equations. Then the solution to the Enskog equation is written in the form 

fE(t, X, V) =fu(t ,  x, V) + a .r(t, x, V) (36) 

where fB is the solution of the Boltzmann equation given by Theorem 2. 
Problem (35) is then equivalent to the following evolution equation for the 
remainder: 

r # = 2(q/Jo(fB, r)) # + a(~ r)) # + (q/Ro(fB + ar; fB, fB)) # 

+ 2a(q/E~(fB + ar;fB, r)) # + a2(qlff~(fB + ar; r, r)) # 

+ (q/J~l)(fB, fB)) (37) 

The following preliminary lemmas (the proofs of Lemmas 2 and 3 are 
given in the Appendix) are the first steps toward the mathematical analysis 
of problem (37). 

Lemma 1. 

Lemma 2. 

VX, a • [t~ 3 the  following inequality h o l d s :  

W=(lx[)/W=(lx + al)~< (1 + lal + lai2) =/2 (38) 

Let cl be the constant defined in Theorem 1, Eq. (25). 



242 Bellomo and Lachowicz 

Then there exists a constant c 4 of the order of unity as a $ 0 such that the 
following inequality holds: 

IIl~J~/(f, f)lllo ~ (el + o'c4) tllflll ~ (39) 

In the same fashion the following further inequality can Remark 5. 
be proven: 

and 

where 

Lemma 3. 

IIl~J~(f, g)111o ~ (ca + o-c4) Ill fill o III gill o (40) 

If 0 < a < a * ,  IIIflllo ~<K*, and g, h~s8 ~ then 

I[I~E~(J2 g, h)lllo ~ Z*(c~ + o-c4)IIIglllo I[Ihlllo (41) 

IIl~E~(fa; gl,  h i ) -  ~//Ea(A; g2, h2)llro 

(r -~- 0c4)(c5 IIIgllllo IIIhllllo II]fa -AIIlo 

+Z* llrhllllo I]lg~-g21110+Z* IIIg=lllo IIIhl-h21110) (42) 

cs=l IIW klILI(R3) 

Remark 5 and Lemma 3 imply that the full Enskog Remark 6. 
operator E~ satisfies the inequalities 

[Hq/E~(f; g, h)tNo ~< (el + 0c6) III glll o IIIhlllo (43) 

and 

]ll~ ; gl, h l ) -  ~ g2, h2)ltlo 

~< ,re7 IIIgllllo IIIhltllo IILf~-f2111o 

-]-(C1-~-0"C6) Illh~NIo ][lg]-g2lllo+(Cl+~rc6)Illg2lllo Illh~-h2lllo (44) 

where 

C6~-C4"~-ClX*-]-a*C4X*, c7=(Cl Wa*c4) l[lW kll Ll(~3) 

The main result of this paper, i.e., the theorem defining the asymptotic 
equivalence of the solutions to the Cauchy problem for the Boltzmann and 
the Enskog equations, can now be formulated. 

T h e o r e m  3. Let)Ca be the mild solution of the Boltzmann equation 
given by Theorem2 for n =  1, and K* and ~* be the critical values 
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introduced in Remark 4; 
O< 0-<. aa ( <~0-*), then a 
exists in ~o. In addition, 

then there exists a constant an such that if 
unique mild solution fE of the Enskog equation 

IItTE - -  G IlL o ~ c o n s t  �9 0- (45) 

ProoL Consider the following constants: 

= 2 Ill/~llko U(cl + 0-*C4) X* "+ C4] 

b = (1 -1-x*o'*)(c 1 + 0-*c4) 

c ~- (1 -1- x * ) ( c  1 --l- 0*c4)  

Following inequality (27), 
chosen such that 

three values 0"1, 0"2, and 0-3, (7 1 ~ 0-2 ~ 0-3, can be 

a = 0"16 + 2cl Iflfa Ell o < 1 (46a) 

c 1 
20"2 ~ IIITBIII ~ ~<-- (46b) 

C1 

4bc 
0 " 3 ~  ]]]fBlI]~ ~ < 1 (46c) ~l- -a) -  

In addition, let ~o  be a closed convex subset of the space ~o  defined by the 
closure 

{ 2c } 
~ o =  re~O:  iiirltlo~l___ ~ IIIf~lll~ 

and A~ be the operator on the right side of the evolution equation (37). 
Assume that 0 < 0- ~< 0-4 = min(0"3, 0"*) and r e ~o; then 

f s  + ar ~ ID* 

and according to Lemmas 2 and 3 and Remark 5, one has 

IlEA~rlllo ~< a Illrlllo + ab Illrl[lg + c IIIfBLI[~ (47) 

Inequalities (46), (47) imply that if r e ~o, then A , r  e ~o. Finally, one can 
apply the inequalities of Lemma 3 and Remark 5 and choose aB ~ 04 so 
that if 0 ~< 0" ~< aB, one obtains for r/< 1 

H]A~rl-A~r2][Io~tl l l [r l-  r21U o (48) 
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Then inequalities (47), (48) imply that Ao is a contraction operator in the 
closed convex subset ~o; consequently, the evolution equation for the 
remainder has, according to the fixed-point theorem, a unique solution 
r e ~  ~ In addition, the Enskog equation has a unique mild solution 
fE = (fB + at) ~ o  and inequality (45) of Theorem 3 is satisfied. | 

Remark 7. Inequality (45) implies that the distance between fE and 
fB tends to zero when a also tends to zero. Theorem 3 does not provide a 
proof of the positivity of rE, which can be obtained, in the same fashion as 
in Ref. 15, by applying the Kaniel and Shinbrot monotone iterative scheme 
to the evolution equation of the Enskog model. 

One can deal with the reverse problem in the same fashion as in the 
above proof. Namely, one can start from an existence theorem for the 
Enskog equation and prove that under the same existence hypotheses one 
can obtain global existence for the Boltzmann equation as well as 
asymptotic equivalence. The starting point is now the main theorem of 
Ref. 15, which can be rewritten, after a proof analogous to that of 
Theorem 2, as follows: 

T h e o r e m  4. Let the initial conditions for the Enskog equation be 
given in ~n, F~ B n, then there exists a critical constant (independent on a) 
such that if F>~0 and ]]FHo<cE, the initial value problem (19a) has a 
unique global solution 0 ~< fE e ~n. 

Then, after calculations analogous to those developed in this section, 
one can prove the following result: 

T h e o r e m  5. Let fE be the mild solution of the Enskog equation 
defined in Theorem 4 for n = 1; then, under a suitable smallness assumption 
on a, a unique solution fB exists to problem (19a) in ~0 and, in addition, 

G J~o ~ I I I f ~ - f ~ l l l o - ~  o (49) 

The proofs of Theorems 4 and 5 are technically the same as the proof 
that produced the main result contained in Theorem 3. It only needs 
slightly more detailed assumptions on the x-functionals. Therefore there 
is no need to report these additional technical details. On the other hand, 
it is worth pointing out that the analysis developed in this paper can be 
regarded as a useful step toward the undertanding of the hydrodynamic 
limit for the Enskog equation, which is still an open problem. 
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A P P E N D I X  

Proof of Lemma 2: 

J(al)(f, f)(t, x, V) 

I f f E ~  1, then one has 

= f~3• s2 ( v ' V f ) ( t ' x + 3 + a v + V ' l ) f ( t ' x ' V ' ) ( ~ ( ( V l - V ) ' v ) d v d V l  

- - f ( t ,x ,V)  fR (V " Vf)(t, x - ~t- o'v, V1) 
3• S 2 

• ~b((v 1 - V ) "  v) dv dV l 
where 

O+=O+(t,x,V'l), 3 = 0  ( t , x , V ' ) ,  3 + ~ 3 0 , 1 [  

The integration of the above quanti ty over t has to be considered carefully 
because of the dependence of the term 3 + on t. Consider first the "gain" 
component  j+( l )  of the operator  j(t); denoting g =  v-Vf,  one has 

I(~ (f, f ) ) #  I 

<<. 3+s21g(s,x+sV+~9+~rv, V'a)l.[f(s,x+sV, V')l 

• ~((va - v ) .  v) dv aVl as 

= Ig#(s, x + s(V - Vl) + ~9 + ~rv, Vl)[ 
3• S 2 

I f  # (s, x + s(V - V')I ~b((Vl - V)- v) dv dVa ds 

~< Ill glllo Illfolll f #  82 f~ (W_p(IX + s(V - V'l) + 8 +~rvl) 

• Wp([X+s(V--V'a)l) 

• w AIx+s(V-V'a)l)  W_p(Ix+s(V-V')l)ds 

• w ~(IV~l) W_k(IVl)~((V~-V).v)dvdVa 

The application of Lemma 1 provides the following inequality: 

I Ue)~+")(f, f ) )  ~ I 

~< (1 + ~ + ~r2) p/= IIIglllo [llflllo 

• W _ , ( I x + s ( V - V l ) l )  W p( Ix+s(V-V ' ) l )ds  
3 •  

• W_k(IVl) W k(IV~l)~((V~-V).v)dvdV~ 
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Analogous treatment can be applied to the "loss" term in the operator j~l). 
Finally, the statement of Lemma 2 is obtained by application of Lemma 2.3 
of Ref. 14; see also Theorem 2.1 of Ref. 4. 

Proof o[ l_emma 3. The first inequality in Lemma 3 follows from 
Hypothesis Z (ii) on the Z function and from Remark 5. Consider now, in 
order to prove the second inequality, the following: 

III~eE~(L; gl ,  h i ) -  q[E~(/2; g2, h2)ltlo 

IIIJgE~(fl ; gl ,  hi) - q/Eo(f2; gl ,  h~)lllo + Ill~ el - g2, h~lllo 

+ III~gE~(f2; g2, h ~ -  h2)lllo 

Hypothesis (iv) on the z-function gives the following estimate on the first 
term on the right side of the above inequality: 

l l l l~J~(gl, h l )tll 0;~ 2 st,uP ((fl - f2)( t, x + IV, V) Wp(Ixl) Wk( IVI )) W_h(IVI )dW 

Then the lemma is proven by straightforward calculations. 
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